Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Year range
1.
Japanese Journal of Physical Fitness and Sports Medicine ; : 265-273, 2002.
Article in Japanese | WPRIM | ID: wpr-371999

ABSTRACT

The aim of this studv was to clarify the effects of water immersion on the cardiovascular recovery process following submaximal steady state exercise on land. Seven male subjects (23 yrs old) underwent experiments under four separate conditions on separate days (15 minutes of cycling exercise at 50% and 80% maximal oxygen consumption followed by 16 minutes of recovery in a sitting position in water and out of water) . Concerning conditions in water, mean water temperature was 29.4 degrees, and the immersion level was set at xiphoid. Mean room temperature in out of water conditions, and during all conditions of exercise, was 24.4 degrees. Oxygen consumption (VO<SUB>2</SUB>), heart rate (HR) and blood pressure (systolic: SBP, diastolic: DBP) were measured under each condi tion. Mean blood pressure was calculated from SBP and DBP (MBP=1/3× ( SBP-DBP) +DBP) . Stroke volume (SV) was measured by Doppler echocardiography, and then cardiac output (CO=SV×HR), total peripheral resistance (TPR=NIBP/CO) and arteriaVmixed venous oxygen difference (a-v O<SUB>2</SUB>diff=VO<SUB>2</SUB>/CO) were calculated. In comparison with the same exercise intensity condition, there were no significant differences between recovery processes of VO<SUB>2</SUB>, HR, SBP, DBP and MBP in and out of water. SV and CO were significantly higher (p<0.05) during the recovery process in water than out of water (SV: at 50 and 80% maximal oxygen consumption conditions, CO: at 80% condition) . The TPR and a-v O<SUB>2</SUB>diff were significantly lower (p<0.05) during the recovery process in water than out of water at 80% oxygen consumption condition. These results indicate that water immersion facilitates circulating blood volume during the recovery process without increasing blood pressure, especially during recovery after high intensity exercise. Therefore, we suggest that increased left ventricular preload with immersion would be an important factor in cardiovascular regulation not only at rest but also during recovery after exercise.

SELECTION OF CITATIONS
SEARCH DETAIL